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Learning objectives

1. Gain general familiarity with the field of

bioinformatics
2. Develop a level of comfort working with

strings in R
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Outline
1. Introduction to bioinformatics
2. Some examples: genome assembly, alignment,
variant detection, gene expression
3. Strings in R handout (Thursday)
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Introduction to bioinformatics

Next unit
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So far, we have learned about the building blocks
for computational analysis of biological concepts
1. Simulations

2. Computational statistics

3. Linear/penalized regression

Over the next (and final) unit, we will explore how
these and other methods are used to handle
biological data, making inferences and predictions
on complex (and often very large) data sets

Unit 4: Bioinformatics and machine learning

USU Department of Biology



Introduction to bioinformatics Unit 4: Bioinformatics and machine learning

Opening discussion

What do you think of when you hear the term
‘bioinformatics’? How is it different from what we’ve
covered so far? Discuss with your group (~3 minutes).
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What i1s bioinformatics?

Application of computational tools to biological
data, usually involves:
1. Large, complex data sets
2. -omics data, e.g., genomics, transcriptomics,
metabolomics, etc.
3. DNA or RNA sequences (i.c., text data)
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Let’s look at some examples of bioinformatics

1. Genome assembly and DNA sequence alignment
2. Variant calling
3. Gene expression analysis

Don’t get bogged down by the small details. Instead, think about
how we are using computational tools to make use of large
biological data sets
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Example 1

Genome assembly and DNA sequence

alignment
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Example 1
Genome assembly and DNA sequence
alignment
How do we turn DNA sequence data into
useful information?
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Typical DNA sequence data - [llumina
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De novo genome sequencing and assembly
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Linear versus non-linear genome models
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Aligning short DNA sequences to a reference

Set of reads
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alignment or mapping is simpler than genome assembly
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Aligning short DNA sequences to a reference

Problem: Genome files can be HUGE (billions
of base pairs in a single text file), how do we
work with them quickly?
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Burrows-Wheeler transform speeds reference-based alignment
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Example 2

Genetic variant calling
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How to get from DNA sequences to SNPs
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Variant detection and genotyping with GATK’s HaplotypeCaller
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Unit 4:

Bioinformatics and machine learning
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Variant detection and genotyping with GATK’s HaplotypeCaller

This 1s great for single nucleotide
polymorphisms (SNPs), but what about other
kinds of genetic variation?
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Structural variants, what they are, and why they matter

1. Structural variants comprise various forms of genome
rearrangements
2. Structural variants are COMMON and pervasive (including in
humans!)
3. Structural variants can affect phenotypes via several
mechanisms
4. Human disease studies suggest they are at least as important as
SNPs 1n explaining trait/disease variation
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Types of structural variants

deletion insertion duplication
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Impact of structural variants
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Structural variant signals in standard alignments
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Long reads facilitate identifying structural variants

Genome sequence — | | | | | pr—
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long reads recover tandem duplication not resolved with short reads
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Long reads facilitate identifying structural variants- Oxford Nanopore
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Reads can exceed 4Mb, while typical Sequence
sequencing produces reads ~500bp in length
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Long reads facilitate identifying structural variants- PacBio Hifi
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A typical gene expression (RNAseq) experiment
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Differential expression of genes in seed beetles adapted to different hosts
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Differential expression of genes in seed beetles adapted to different hosts
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Bioinformatics and strings

Many of these examples involve
analyzing textual data (or strings),
rather than numerical data
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Strings in R

On Thursday, we will explore strings
in R
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